Modulating interfacial attraction of polymer-grafted nanoparticles in melts under shear.

نویسندگان

  • Erkan Senses
  • Yang Jiao
  • Pinar Akcora
چکیده

The mechanical properties of polymer nanocomposites are significantly affected by spatial ordering of nanoparticles (NPs) which can be modified under shear flow fields. Polymer-grafted iron oxide NPs form strings, well-dispersed, and percolated anisotropic nanostructures depending on grafting density, and herein their mechanical properties under large oscillatory shear flows are reported. We show that flow-induced alignment of NPs is achieved with string-like structures at low particle loadings (5 wt%). Further, entropic surface tension between grafted and free chains decreases by facilitating the penetration of long matrix chains into the grafts with oscillatory shear flow. Consequently, the degree of entanglements at large strain amplitudes is enhanced which is reflected in elastic properties. These results indicate that the matrix polymer plays an effective role in the reinforcement of polymer-grafted NPs under large shear flow fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Interaction Forces between Nanoparticles:  End-Grafted Polymer Modifiers.

The interaction forces between nanoscale colloidal particles coated with end-grafted Lennard-Jones homopolymers are calculated using off-lattice Monte Carlo simulations in the NVT ensemble. The focus of this work is on grafted polymers that are of approximately the same size as the nanoparticle, a regime intermediate to the star-polymer and Derjaguin limits. The effects of chain length (N), nan...

متن کامل

A review on melt-state viscoelastic properties of polymer nanocomposites.

The mixing of polymer matrices with nanoparticles to form composite materials has been an area of great research interest. The mechanical and rheological properties of such composite materials are directly related to the properties of the matrix polymer, the properties of the nano-filler, the strength and nature of the interfacial interactions between the polymer matrix and the filler, and fina...

متن کامل

of 21 Soft Matter S of tM at te r A cc ep te d M an us cr ip t

Mechanical properties of polymer nanocomposites are significantly affected by spatial ordering of nanoparticles (NPs) which can be modified under shear flow fields. Polymer-grafted iron oxide NPs form strings, well-dispersed, and percolated anisotropic nanostructures depending on grafting density, and herein their mechanical properties under large oscillatory shear flows are reported. We show t...

متن کامل

Effect of shear on nanoparticle dispersion in polymer melts: A coarse-grained molecular dynamics study.

Coarse-grained, molecular dynamics (MD) simulations have been conducted to study the effect of shear flow on polymer nanocomposite systems. In particular, the interactions between different components have been tuned such that the nanoparticle-nanoparticle attraction is stronger than nanoparticle-polymer interaction, and therefore, the final equilibrium state for such systems is one with cluste...

متن کامل

Direct Measurements of Polymer Brush Conformation Using Small- Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts

Small-angle neutron scattering (SANS) is a sensitive technique that is able to probe the structure of polymer-grafted nanoparticles and free polymer chains. Here, we combine SANS measurements with self-consistent field theory (SCFT) calculations to study the structure of deuterated poly(methyl methacrylate) (dPMMA) nanocomposites containing PMMA-grafted Fe3O4 nanospheres, with a specific emphas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 25  شماره 

صفحات  -

تاریخ انتشار 2014